PG-268

10321

IV Semester M.Sc. Examination, July - 2019 (CBCS - Y2K17/Y2K14)

MATHEMATICS

M401T: Measure and Integration

Time: 3 Hours

Max. Marks: 70

- Instructions: (i) Answer any five full questions.
 - (ii) All full questions carry equal marks.
- 1. (a) Define outer measure of a set. Show that outer measure of an interval 8+6 is equal to its length.
 - (b) Show that cantor's ternary set constructed from [0, 1] has measure zero.
- 2. (a) If E_1 and E_2 are any measurable sets then prove that $m^*(E_1 \cup E_2) + m^*(E_1 \cap E_2) = m^*E_1 + m^*E_2$
 - (b) Prove that the collection of all measurable sets is an \u03c3 Algebra.
 - (c) If E is a measurable set then show that E+y, for any y∈R is measurable.
- 3. (a) If f and g are measurable functions on a measurable set E then prove 8+6 that f+g, fg, max \(f, g \) and min \(f, g \) are measurable.
 - (b) Let E be a measurable set with $ME < \infty$ and let $\{f_n\}$ be a sequence of measurable functions defined on E. If $f: E \to \mathbf{R}$ is a measurable function, such that $f_n(x) \to f(x)$ for each $x \in E$ then prove that for $\epsilon > 0$ and $\delta > 0$ there is a measurable subset $A \subset E$ with $MA < \delta$ and an integer N such that $|f_n(x) f(x)| < \epsilon$, $\forall n \geq N$, $x \in E A$.
- 4. (a) State and prove Faton's Lemma. Deduce monotone convergence 8+6 theorem.
 - (b) Let f be a non-negative measurable function which is integrable over a measurable set E. Then show that for a given $\epsilon > 0$ there exists a $\delta > 0$ such that for every measurable set $A \in E$ with $mA < \delta$ we have $\int_A f < \epsilon$.

P.T.O.

- a. (a) Biats and prove Generalized Lebesgue dominated Convergence theorem, 6+8
 - (a) If f is a monotonically increasing function over [a, b] then prove that exists almost everywhere on [a, b]. Further show that $\int f(x) dx \le f(b) = f(a)$.
- (a) Let f : |a, b| ⇒ R be a bounded function. Show that f is a function of 7+7 bounded variation on |a, b| in the following cases:
 (i) f is monotonic (ii) f' exists
 - (b) Show that a function $f: [a, b] \to \mathbb{R}$ is a function of bounded variation on [a, b] if and only if f can be written as a difference of two monotonically increasing functions.
- (a) Let f be an integrable function defined over [a, b]. If $\int_a^x f(t) dt = 0$ for all 7+7 we [a, b], then prove that f=0 almost everywhere on [a, b].
 - (b) Show that for an integrable function f on [a, b], the function $F(x) = \int f(t) dt + F(a)$, we have, F'(x) = f(x) almost everywhere on [a, b].
- (a) Show that if f is absolutely continuous on [a, b] then f is integrable on 5+

 [a, b] and $\int_a^x f'(t) dt = f(x) f(a)$, $\forall x \in [a, b]$.
 - (b) Prove that indefinite integral of an integrable function on [a, b] is absolutely continuous on [a, b]. Further prove that if F is an absolutely continuous function on [a, b], then F is an indefinite integral of some integrable function.